Conversion Factors and Unique Formulae Associated With the Transportation Professional Certification Board's Certification Examinations

Soft Conversion Factors

Metric	English	English	Metric
1 meter (m)	3.28 feet (ft)	1 foot (ft)	0.305 meters (m)
1 kilometer (km)	0.62 miles	1 mile (5,280 ft)	1.609 kilometers (km)
1 km/hour	0.62 mph	1 mph	1.609 km/hour
1 kilogram (kg)	2.20 pounds (lb)	1 pound (lb)	0.454 kilograms(kg)

Hard Conversion Factors

Lane Width		Shoulder Width/Clearance	
Metric (m)	English (ft)	Metric (m)	English (ft)
3.6 meters (m)	12 feet (ft)	3.0 meters (m)	10 feet (ft)
3.3 meters (m)	11 feet (ft)	2.4 meters (m)	8 feet (ft)
3.0 meters (m)	10 feet (ft)	1.8 meters (m)	6 feet (ft)
2.7 meters (m)	9 feet (ft)	1.2 meters (m)	4 feet (ft)

English	Metric	
$E_m = \lambda^2/\mu(\mu - \lambda)$		
Where:		
E_m = average queue length (veh)		
λ = arrival rate (v/min)		
μ = service rate (v/min)		
If S < L, then L = $AS^2/2158$	If S < L, then L = AS ² /658	
If S > L, then L = 2S – (2158/A)	If S > L, then L = 2S – (658/A)	
Where:	Where:	
L = length of vertical curve (ft)	L = length of vertical curve (m)	
A = algebraic difference in grades (%)	A = algebraic difference in grades (%)	
$ G_1 - G_2 $ (absolute of $G_1 - G_2$ in %)	$ G_1 - G_2 $ (absolute of $G_1 - G_2$ in %)	
S = sight distance (ft)	S = sight distance (m)	
d = 1.47 Vt + 1.075 V ² /a	d = 0.278 Vt + 0.039 V ² /a	
Where:	Where:	
d = stopping distance (ft)	d = stopping distance (m)	
V = initial speed (mph)	V = initial speed (km/h)	
t = brake reaction time, 2.5 s (s)	t = brake reaction time, 2.5 s (s)	
a = deceleration rate (ft/s ²)	a = deceleration rate (m/s^2)	

English	Metric
$P = F [1/(1 + i)^n]$	
Where: P = present worth of a future amount F = future amount i = interest rate n = service life P = A $[(1 + i)^n - 1] / [i(1 + i)^n]$	
 Where: P = present worth of a series of future amounts A = annual amount i = interest rate n = service life 	
Incremental benefit/cost ratio of project <i>j</i> over project <i>k</i> = <u>(Benefits_j – Benefits_k)</u> (Costs _j – Costs _k)	
$CP = t + (v/(2a \pm 2Gg)) + (W + L)/v$	$CP = t + (v/(2a \pm 2Gg)) + (W + L)/v$
Where: CP = change period (change + clearance intervals) (s) t = driver perception/reaction time (s) v = approach velocity (ft/s) a = deceleration rate (ft/s ²) g = 32/2 ft/s ² G = percent of grade/100 W = width of intersection (ft) L = length of vehicle (ft) PF = f_{r}(1 - P)/(1 - (g/C))	<pre>Where: CP = change period (change + clearance intervals) (s) t = driver perception/reaction time (s) v = approach velocity (m/s) a = deceleration rate (m/s²) g = 9.8 m/s² G = percent of grade/100 W = width of intersection (m) L = length of vehicle (m)</pre>
<pre>Where: PF = progression factor f_p = supplemental adjustment factor P = proportion of vehicles arriving on green g = green time of phase(s) C = cycle length</pre>	

English	Metric
$f = (V^2/15R) - e/100$	f = (V ² /127R) – e/100
Where: f = side friction factor V = speed (mph) R = curve radius (ft) e = rate of superelevation (%)	Where: f = side friction factor V = speed (km/h) R = curve radius (m) e = rate of superelevation (%)
$d = 1.47V(J + t_a)$	d = 0.28V(J + t _a)
Where: d = sight distance required (ft) V = approaching train velocity (mph) J = driver perception/reaction time (s) t _a = time to accelerate and clear (s)	Where: d = sight distance required (m) V = approaching train velocity (km/h) J = driver perception/reaction time (s) t _a = time to accelerate and clear (s)
$C_0 = (1.5L + 5)/(1 - Y_1 - Y_2 - Y_3Y_n)$	
 C_o = optimum cycle length(s) L = lost time/cycle(s) Y_n = critical volume/saturation flow rate by phase 	
K = L/A	K = L/A
Where: K = a factor L = length of curve (ft) A = algebraic difference in grades (%) G ₁ - G ₂ (absolute of G ₁ - G ₂ in %)	Where: K = a factor L = length of curve (m) A = algebraic difference in grades (%) G ₁ - G ₂ (absolute of G ₁ - G ₂ in %)
$U_{s} = dn/\Sigma t$ $U_{t} = \Sigma u/n$ $U_{t} = U_{s} + \sigma_{s}^{2}/U_{s}$	
Where: U_s = average space-mean speed U_t = average time-mean speed σ_s^2 = variance of space-mean speeds d = distance traversed n = number of travel times observed t_i = travel time for the <i>i</i> th vehicle u_i = speed of the <i>i</i> th vehicle	

English	Metric	
R _{sec} = A x 10 ⁸ /(365TVL)	R _{sec} = A x 10 ⁸ /(365TVL)	
 Where: R_{sec} = crash rate for the road section per hundred million vehicle miles A = number of reported crashes T = time period of the crashes (years) V = annual average daily traffic volume (vehicles per day) L = length of the segment (miles) 	 Where: R_{sec} = crash rate for the road section per hundred million vehicle kilometers A = number of reported crashes T = time period of the crashes (years) V = annual average daily traffic volume (vehicles per day) L = length of the segment (kilometers) 	
R _{spot} = A x 10 ⁶ /(365TV) Where: R _{spot} = crash rate for the spot per million vehicles A = number of reported crashes T = time period of the analysis (years) V = annual average daily traffic volume entering the spot (vehicles per day)		
$d = \frac{v_i^2 - v_f^2}{2a}$	$d = \frac{v_i^2 - v_f^2}{2a}$	
Where: d = distance $v_i = initial velocity (fps)$ $v_f = final velocity (fps)$ a = acceleration rate (ft/sec2)	Where: d = distance $v_i = initial velocity (mps)$ $v_f = final velocity (mps)$ a = acceleration rate (m/sec2)	
$t = \frac{v_f - v_i}{a}$	$t = \frac{v_f - v_i}{a}$	
t = total time v_f = final speed (fps) v_i = initial speed (fps) a = acceleration (ft/sec ²)	t = total time v_f = final speed (mps) v_i = initial speed (mps) a = acceleration (m/sec ²)	
Density (veh/mi) = average travel speed (mi/h)	Density (veh/km) = average travel speed (km/h)	

Revised 12/2022