Equations for RSP level 2 Infrastructure Form

Equation 1:

$$N_1/N_0 = (V_1/V_0)^{\alpha}$$

Where:

 N_0 = number of crashes on the roadway before

 N_1 = number of crashes on the roadway after

 \bar{V}_0 = average operating speed of a roadway before

 \bar{V}_1 = average operating speed of a roadway after

 $\alpha = 4$ for fatal crashes

 $\alpha = 3$ for fatal & serious injury crashes

 $\alpha = 2$ for all injury crashes

Equation 2:

$$N_{\text{expected}} = w \times N_{\text{predicted}} + (1 - w) \times N_{\text{observed}}$$

Where:

 N_{expected} = expected average crash frequency for the study period

 $N_{\text{predicted}}$ = predicted average crash frequency predicted using a SPF for the

study period under the given conditions

w = weighted adjustment to be placed on the SPF prediction

 N_{observed} = observed crash frequency at the site over the study period

and

$$w = \frac{1}{1 + k \times \left(\sum_{\text{all study}} N_{\text{predicted}}\right)}$$

Where:

k = overdispersion parameter from the associated SPF

Equations for RSP level 2 Infrastructure Form

Equation 3:

Incremental BCR =
$$(PV_{\text{benefits 2}} - PV_{\text{benefits 1}})/(PV_{\text{costs 2}} - PV_{\text{costs 1}})$$

Where:

*PV*_{benefits 1} = Present value of benefits for lower-cost project

 $PV_{\text{benefits 2}}$ = Present value of benefits for higher-cost project

 $PV_{\text{costs 1}}$ = Present value of cost for lower-cost project

 $PV_{\text{costs 2}}$ = Present value of cost for higher-cost project

Equation 4:

Standard error of estimate =
$$\sqrt{\left[\sum (Y_{\text{actual}} - Y_{\text{predicted}})^2/N\right]}$$

Where:

N = number of comparisons

Equation 5:

Standard error =
$$\frac{s}{\sqrt{n}}$$

Where:

s =standard deviation of the population

n = size of sample

Equations for RSP level 2 Infrastructure Form

Equation 6:

$$Variance = \left[\sum (x_i - x_{mean})^2\right]/n - 1$$

Where:

= number of observations

= the ith value in the sample

 x_{mean} = the arithmetic mean of the sample

Equation 7:

$$CI(y\%) = CMF_x \pm SE_x \times MSE$$

Where:

 $\mathrm{CI}(y\%) = \begin{cases} \text{the confidence interval for which it is y-percent probable that the true} \\ \text{value of the CMF is within the interval} \end{cases}$

 CMF_x = Crash Modification Factor for condition x

 SE_x = Standard Error of the CMF_x

MSE = Multiple of Standard Error

Equation 8:

$$SE = \sqrt{\left(S_a^2 + S_b^2\right)}$$

Where:

SE = standard error of the difference between two random variables

= the standard error of variable a

 S_b = the standard error of variable b